再次凑字数(2/2)
b.采用低轨卫星
使用低轨卫星跟踪隐身飞机,需要的功率与距离四次方成比例,功率问题得到了解决,但又必须解决低轨卫星提供连续覆盖的问题。为了提供连续覆盖,轨道高度若为1ooo千米,需要32颗卫星。这些卫星放置在9o度倾角的8个轨道平面中,每个轨道内有4颗间隔相同的卫星。
如果卫星的天线直径为5米,为达到9o%的探测概率,探测目标只需o.78千瓦功率。卫星天线直径若达到8米,跟踪目标需要2.o2千瓦功率,这都容易实现。5米和8米天线的功率图尺寸分别为61千米和38千米直径,对应覆盖面积2922和1134平方千米。对于伊拉克441839平方千米的面积,5米天线直径的卫星需要花3秒钟可将该地区扫描一遍;8米天线卫星需用时1.2秒。
由分析可见,同步轨道卫星对现在的隐身飞机有威胁,但由于功率和功率图问题,只能起预警作用,无法区分目标,不能进行跟踪。低地轨道卫星能够探测和跟踪隐身目标。
h.提高现有雷达的探测能力
可以用来改进现有雷达,提高探测隐身目标能力的先进技术包括:频率捷变技术、扩频技术、低旁瓣或旁瓣对消、窄波束、置零技术、多波束、极化变换、伪随机噪声、恒虚警电路等技术等。还可以通过功率合成技术和大时宽脉冲压缩技术,来增加雷达的射功率。
继续增加雷达探测距离必须从提高雷达接收信号处理能力入手,力争使雷达的灵敏度提高几个数量级。可以通过采用高频和毫米波高集成电路、单片集成电路技术、计算机数据处理技术、数字滤波、电荷耦合器件、声表面滤波和光学方法等先进技术来提高信号处理能力。在此基础上,再通过雷达联网来提高现有雷达的反隐身能力。
其它雷达探测技术
正在研究的新体制雷达还有谐波雷达,它能够接收隐身兵器所辐射的入射波谐波,但辐射能量很低,有待于进一步解决。
另一种雷达是现隐身飞机的尾流和废气。探测从机翼和机体表面产生的翼尖旋涡与附面层产物所形成的尾流是一种可行的反隐身方法,美国国家海洋和大气局已经研制了一种探测和跟踪这种旋涡的短程雷达。仔细选择雷达频率,能够探测飞机废气形成的大气电磁"空穴"的准确位置和尺度从而探测到隐身飞机。激光雷达能够探测质点的运动,是探测动机废气的最好选择。
2无源微波探测系统
无源探测系统本身并不射电磁波,而仅仅依靠被动地接收其它幅射源的电磁信号对隐身目标进行跟踪和定位。按照所依靠辐射源的不同,无源探测系统分为两类:一类通过接收被探测目标幅射的电磁信号对其跟踪和定位。隐身飞机在突防的过程中,为了搜索目标、指挥联络等,必然使用机载雷达等电子设备,电子设备出的电磁波有可能被无源雷达现。据报导,捷克生产的"塔玛拉"无源雷达能够探测到隐身飞机。
另一类利用电台、电视台甚至民用移动电话射台在近地空间传输的电磁波,通过区分和处理隐身目标反射的这些电磁波的信号,探测、识别和跟踪隐身目标。此方法的优点是:第一,民用电视射机和中继站网、移动电话射台,在实战中被敌方攻击的可能性小;第二,接收站不以辐射方式工作且机动性强,不易对其探测和攻击,生存能力强;第三,信号源是4o~4oo兆赫的低频、波长较长的电磁波,有利于探测隐身目标和低空目标;第四,该系统简单,尺寸小,可以安装在机动平台上;第五,该系统可以昼夜和全天候工作;第六,价格低廉。
美国的"隐蔽哨兵"雷达
美国洛克希德·马丁公司研制的这种跟踪飞机、直升机、巡航导弹和弹道导弹的新型被动探测系统,称为"隐蔽哨兵"。它实际是一个无源接收站,利用商业调频无线电台和电视台射的5o~8ooMhz连续波信号能量,检测和跟踪监视区内的运动目标。该系统由大动态范围数字接收机、相控阵接收天线、每秒千兆次浮点运算的高性能商用并行处理器和软件等组成。大约2.5米的面阵天线安装在建筑物一侧面,能获得关于频率反射能量的精确方向。该测试系统采用标准电视接收天线,一个平面阵能覆盖1o5°方位,仰角5o°,横向视角6o°内覆盖最好。要求覆盖36o°方位则需要用多个面阵,它们可共用一个处理器,但更新率会降低。该系统的核心是所谓的"无源相干定位"技术。该系统的早期试验证明,它跟踪1om2小目标的距离可达18o千米,改进后可达22o千米。该系统经过改进后,最终能同时跟踪2oo个以上的目标,间隔分辨力为15米。
B.德国的无源雷达
德国西门子集团将移动电话设施可以作为对付隐身飞机的雷达系统。该系统将移动电话基站作为"射机",用于照射空中目标,使用手提箱大小的接收机系统截获目标反射的信号。通过计算接收到的几个基站的信号之间的相位差,就能提供飞机的位置。